Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

The Chevrel phase $\mathrm{HgMo}_{6} \mathbf{S}_{8}$

Diala Salloum, Patrick Gougeon* and Michel Potel

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France Correspondence e-mail: Patrick.Gougeon@univ-rennes1.fr

Received 16 March 2009; accepted 2 April 2009

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma($ Mo-S $)=0.001 \AA$; disorder in main residue; R factor $=0.025 ; w R$ factor $=0.026$; data-to-parameter ratio $=36.2$.

The crystal structure of $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$, mercury(II) hexamolybdenum octasulfide, is based on $\left(\mathrm{Mo}_{6} \mathrm{~S}_{8}\right) \mathrm{S}_{6}$ cluster units ($\overline{3}$ symmetry) interconnected through interunit Mo-S bonds. The Hg^{2+} cations occupy large voids between the different cluster units and are covalently bonded to two S atoms. The Hg atoms and one S atom lie on sites with crystallographic $\overline{3}$ and 3 symmetry, respectively. Refinement of the occupancy factor of the Hg atom led to the composition $\mathrm{Hg}_{0.973(3)} \mathrm{Mo}_{6} \mathrm{~S}_{8}$.

Related literature

For isotypic structures, see: Chevrel \& Sergent (1982). For a previous report on the title compound as a polycrystalline material, see: Tarascon et al. (1983). For crystallographic background, see: Becker \& Coppens (1974); Johnson \& Levy (1974).

Experimental

Crystal data

$\mathrm{Hg}_{0.973} \mathrm{Mo}_{6} \mathrm{~S}_{8}$
$M_{r}=1027.3$
Trigonal, $R \overline{3}$
$a=9.4319$ (3) \AA
$c=10.7028$ (3) \AA
$V=824.57$ (4) A ${ }^{3}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: analytical (de Meulenaer \& Tompa, 1965) $T_{\text {min }}=0.298, T_{\text {max }}=0.384$

$$
Z=3
$$

Mo $K \alpha$ radiation
$\mu=21.62 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.08 \times 0.07 \times 0.06 \mathrm{~mm}$

[^0]
Refinement

$\begin{array}{ll}R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025 & 31 \text { parameters } \\ w R\left(F^{2}\right)=0.026 & \Delta \rho_{\max }=2.64 \mathrm{e}^{-3} \\ S=1.74 & \Delta \rho_{\min }=-1.57 \mathrm{e}^{-3}\end{array}$
1121 reflections

Table 1
Selected bond lengths (\AA).

Hg1-S1	2.3914 (8)	Mo1-S2	2.4236 (6)
Mo1-Mo1 ${ }^{\text {i }}$	2.7184 (3)	$\mathrm{Mo} 1-\mathrm{S} 2^{\text {iii }}$	2.4896 (8)
$\mathrm{Mo} 1-\mathrm{Mo1}{ }^{\text {ii }}$	2.7515 (3)	$\mathrm{Mo} 1-\mathrm{S}^{\text {ii }}$	2.4933 (6)
Mo1-S1	2.4108 (7)	$\mathrm{Mo} 1-\mathrm{S} 2^{\text {iv }}$	2.4340 (8)

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2000 (Petříček \& Dušek, 2000); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: JANA2000.

Intensity data were collected on the Nonius KappaCCD Xray diffactometer system of the Centre de diffractométrie de l'Université de Rennes I (www.cdifx.univ-rennes1.fr).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2226).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147.
Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.
Chevrel, R. \& Sergent, M. (1982). Superconductivity in Ternary Compounds, Vol. 1, edited by O. Fischer, pp. 25-86. New York: Springer.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Johnson, C. K. \& Levy, H. A. (1974). International Tables for X-ray Crystallography, edited by J. A. Ibers \& W. C. Hamilton, Vol. IV, pp. 311336. Birmingham: Kynoch Press.

Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. A19, 1014-1018.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Petríček, V. \& Dušek, M. (2000). JANA2000. Institute of Physics, Praha, Czech Republic.
Tarascon, J. M., Waszczak, J. V., Hull, G. W., DiSalvo, F. J. \& Blitzer, L. D. (1983). Solid State Commun. 47, 973-979.

supplementary materials

Acta Cryst. (2009). E65, i34 [doi:10.1107/S1600536809012495]

The Chevrel phase $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$

D. Salloum, P. Gougeon and M. Potel

Comment

The superconducting compound $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ was first synthesized as a powder sample by Tarascon et al. (1983), but no details were given on its crystal structure. In the present study, we present the crystal structure refinement of $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ that has been determined from single-crystal X-ray diffraction data. The title compound is isostructural with the hexagonal Chevrel phases $M \mathrm{Mo}_{6} X_{8}$ where M is a large cation ($M=$ alkali metal, alkaline earth, lanthanide, actinide etc.; $X=\mathrm{S}, \mathrm{Se}, \mathrm{Te}$) [see, for instance, Chevrel \& Sergent (1982)]. As a consequence its crystal structure consists of octahedral Mo ${ }_{6}$ clusters surrounded by fourteen sulfur atoms with eight of them forming a distorted cube (i-type ligands) and the remaining six capping the faces of the S_{8} cube (a-type ligands). In the structure of $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$, a part of the chalcogen atoms of the $\mathrm{Mo}_{6} \mathrm{~S}_{8}^{i} \mathrm{~S}^{a}{ }_{6}$ unit are shared according to the formula $\mathrm{Mo}_{6} \mathrm{~S}_{2}{ }_{2} \mathrm{~S}^{i-a}{ }_{6 / 2} \mathrm{~S}^{a-i}{ }_{6 / 2}$ to form the three-dimensional Mo—S network. The $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ cluster unit is centered at Wyckoff position $6 b$ (3 symmetry). The Mo—Mo distances within the Mo_{6} clusters are 2.7184 (3) \AA for the intra-triangle distances (distances within the Mo_{3} triangles formed by the Mo atoms related through the threefold axis) and 2.7515 (3) \AA for the inter-triangle distances. Each Mo atom is surrounded by five S atoms (4 S1 and 1 S 2) forming a distorted square-based pyramid. The apex of the pyramid is shared with an adjacent unit and thus ensures the three-dimensional cohesion. Consequently, each $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ unit is interconnected to $6 \mathrm{Mo}_{6} \mathrm{~S}_{8}$ units to form the $\mathrm{Mo}-\mathrm{S}$ framework. It results from this arrangement that the shortest intercluster Mo1—Mo1 distances between the Mo_{6} clusters is 3.2934 (3) \AA, indicating only weak metal-metal interaction. The Hg^{2+} cations reside in the large eight-coordinate voids formed by the chalcogen atoms from eight different $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ units. They are covalently bonded to two S 2 atoms at a distance of 2.3914 (8) \AA.
$\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ was found to be superconducting at 8 K from DC-susceptibility measurements on a batch of single crystals.

Experimental

$\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ was obtained in three steps involving, first, the syntheses of single-crystal of $\mathrm{InMo}_{6} \mathrm{~S}_{8}$ by solid state reaction, then the preparation of the binary compound $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ by 'chimie douce' methods and, finally, the synthesis of the title compound by inserting mercury into the $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ host structure at low temperatures. Single crystals of $\mathrm{InMo}_{6} \mathrm{~S}_{8}$ were obtained from a stoichiometric mixture of $\mathrm{In}_{2} \mathrm{~S}_{3}, \mathrm{MoS}_{2}$ and Mo. All handlings of materials were done in an argon-filled glove box. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at the rate of $300 \mathrm{~K} / \mathrm{h}$ up to 1773 K , the temperature which was held for six hours, then cooled at $100 \mathrm{~K} / \mathrm{h}$ down to 1273 K and finally furnace cooled. $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ was obtained by oxidation of single-crystals of $\mathrm{InMo}_{6} \mathrm{~S}_{8}$ by iodine in a glass tube sealed under vacuum. The end of the tube containing the crystals of the In compound and an excess of iodine was placed in a furnace with about 3 cm of the other end sticking out of the furnace, at about room temperature. The furnace was then heated at 523 K for 96 h . At the end of the reaction, crystals of InI_{3} and I_{2} were obtained at the cooler end of the tube. Finally, $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ was prepared by diffusion of mercury into crystals of $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ in a silica glass tube sealed under vacuum at 673 K during 96 h .

supplementary materials

Refinement

The structure was refined using an anisotropic approximation and converged at an reliability factor $R(F)=0.034$. Analyses of the difference Fourier maps revealed positive and negative residual peaks around the Hg atom. Fourth-order tensors in the Gram-Charlier expansion (Johnson \& Levy, 1974) of the mercury displacement factor were used to describe the electron density around this site. The resulting R value dropped to 0.025 for only five additional parameters. Refinement of the occupancy factor of the Hg atom led to the final composition $\mathrm{Hg}_{0.973}{ }_{(3)} \mathrm{Mo}_{6} \mathrm{~S}_{8}$.

Figures

Fig. 1. : View of $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ along [110].

Fig. 2. : Plot showing the atom-numbering scheme and the interunit linkage of the $\left(\mathrm{Mo}_{6} \mathrm{~S}_{8}\right) \mathrm{S}_{6}$ cluster units. Displacement ellipsoids are drawn at the 97% probability level.
(I)

Crystal data

$\mathrm{Hg}_{0.973} \mathrm{Mo}_{6} \mathrm{~S}_{8}$

$M_{r}=1027.3$
Trigonal, $R \overline{3}$
Hall symbol: -R 3
$a=9.4319(3) \AA$
$b=9.4319$ (3) \AA
$c=10.7028$ (3) \AA
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=120^{\circ}$
$V=824.57(4) \AA^{3}$

$$
\begin{aligned}
& Z=3 \\
& F_{000}=1374 \\
& D_{\mathrm{x}}=6.204(1) \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71069 \AA \\
& \text { Cell parameters from } 7043 \text { reflections } \\
& \theta=2.0-42.1^{\circ} \\
& \mu=21.62 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Truncated cube, black } \\
& 0.08 \times 0.07 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
1121 independent reflections

Monochromator: horizontally mounted graphite crystal

Detector resolution: 9 pixels mm^{-1}
$T=293 \mathrm{~K}$
$\omega-$ and φ-scans
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.298, T_{\text {max }}=0.384$
1069 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.044$

5784 measured reflections

Refinement

Refinement on F

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.026$
$S=1.74$
1121 reflections
31 parameters

Weighting scheme based on measured s.u.'s $w=1 /$
$\sigma^{2}(F)$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=2.64 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.57$ e \AA^{-3}
Extinction correction: B-C type 1 Lorentzian isotropic (Becker \& Coppens, 1974)
Extinction coefficient: 0.020681

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Hg1	0	0	0	$0.0339(4)$	$0.973(3)$
Mo1	$-0.01555(2)$	$-0.17363(2)$	$-0.394419(15)$	$0.00748(7)$	
S1	0	0	$-0.22344(8)$	$0.0113(2)$	
S2	$-0.03460(6)$	$-0.31591(7)$	$-0.58775(4)$	$0.00933(17)$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg 1	$0.0384(4)$	$0.0384(4)$	$0.0249(6)$	$0.0192(2)$	0	0
$\mathrm{Mo1}$	$0.00780(9)$	$0.00831(9)$	$0.00617(10)$	$0.00391(6)$	$0.00003(5)$	$-0.00036(5)$
S 1	$0.0126(2)$	$0.0126(2)$	$0.0088(3)$	$0.00628(12)$	0	0
S 2	$0.0097(2)$	$0.0096(2)$	$0.0087(2)$	$0.00476(17)$	$0.00067(15)$	$-0.00032(15)$

Geometric parameters ($\AA,{ }^{\circ}$)

Hg1-S1	2.3914 (8)	Mol-Mo1 ${ }^{\text {ix }}$	2.7184 (3)
$\mathrm{Hg} 1-\mathrm{S} 1^{\text {i }}$	2.3914 (8)	Moi-Mo1 ${ }^{\text {x }}$	2.7515 (3)
$\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	3.2056 (4)	Mol-Mo1 ${ }^{\text {xi }}$	2.7184 (4)

$\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	3.2056 (4)
$\mathrm{Hg} 1-\mathrm{S}^{\text {iv }}$	3.2056 (7)
$\mathrm{Hg} 1-\mathrm{S}^{\text {v }}$	3.2056 (7)
$\mathrm{Hg} 1-\mathrm{S}^{\text {vi }}$	3.2056 (8)
$\mathrm{Hg} 1-\mathrm{S2}^{\text {vii }}$	3.2056 (8)
Mol-Mo1 ${ }^{\text {viii }}$	3.8679 (3)
Mol-Mol ${ }^{\text {iii }}$	3.2131 (2)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 1^{\text {i }}$	180
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	105.278 (8)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	74.722 (8)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S}^{\text {iv }}$	105.278 (9)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {v }}$	74.722 (9)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {vi }}$	105.278 (9)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {vii }}$	74.722 (9)
S1 ${ }^{\text {i }}$ - $\mathrm{Hg} 1-\mathrm{S} 1$	180
$\mathrm{S} 1{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	74.722 (8)
$\mathrm{S} 1{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	105.278 (8)
$\mathrm{S} 1{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iv }}$	74.722 (9)
$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{S}^{\text {v }}$	105.278 (9)
$\mathrm{S} 1{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {vi }}$	74.722 (9)
$\mathrm{S} 1^{\text {i }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {vii }}$	105.278 (9)
$\mathrm{S} 2{ }^{\text {ii }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	180
$\mathrm{S} 2{ }^{\text {ii }}-\mathrm{Hg} 1-\mathrm{S}^{\text {iv }}$	113.319 (18)
$\mathrm{S} 22^{\mathrm{ii}}-\mathrm{Hg} 1-\mathrm{S} 2^{\mathrm{v}}$	66.681 (18)
$\mathrm{S} 2{ }^{\text {ii }}-\mathrm{Hg} 1-\mathrm{S}^{\text {vi }}$	113.319 (17)
$\mathrm{S} 2{ }^{\text {ii }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {vii }}$	66.681 (17)
$\mathrm{S} 2{ }^{\text {iiii }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	180
$\mathrm{S} 2{ }^{\text {iii }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iv }}$	66.681 (18)
$\mathrm{S} 2{ }^{\text {iii }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {v }}$	113.319 (18)
$\mathrm{S} 2{ }^{\text {iii }}-\mathrm{Hg} 1-\mathrm{S}^{\text {vi }}$	66.681 (17)
$\mathrm{S} 2{ }^{\text {iii }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {vii }}$	113.319 (17)
$\mathrm{S} 2{ }^{\text {iv }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	113.319 (18)
$\mathrm{S} 2{ }^{\text {iv }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	66.681 (18)
$\mathrm{S} 2{ }^{\text {iv }}-\mathrm{Hg} 1-\mathrm{S} 2^{\text {v }}$	180
$\mathrm{S} 2{ }^{\text {iv }}-\mathrm{Hg} 1-\mathrm{S}^{\text {vi }}$	113.319 (19)
$\mathrm{S} 2{ }^{\text {iv }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {vii }}$	66.681 (19)
$\mathrm{S} 2{ }^{\mathrm{v}}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	66.681 (18)
$\mathrm{S} 2{ }^{\mathrm{v}}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	113.319 (18)
$\mathrm{S} 2{ }^{\text {v }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iv }}$	180
$\mathrm{S} 2{ }^{\mathrm{v}}-\mathrm{Hg} 1-\mathrm{S}^{\text {vi }}$	66.681 (19)

Mol-Mol ${ }^{\text {xii }}$	2.7515 (2)
Mo1-S1	2.4108 (7)
Mo1-S2	2.4236 (6)
Mol-S2 ${ }^{\text {xiii }}$	2.4896 (8)
Mol-S2 ${ }^{\text {x }}$	2.4933 (6)
Mol-S2 ${ }^{\text {xii }}$	2.4340 (8)
Mo1 ${ }^{\mathrm{x}}$-Mol-Mol ${ }^{\text {iii }}$	97.693 (7)
Mo1 ${ }^{\text {x }}$-Mol-Mol ${ }^{\text {ix }}$	90
Mo1 ${ }^{\text {x }}$-Mol-Mor ${ }^{\text {xi }}$	60.398 (8)
Mo1 ${ }^{\text {x }}$-Mo1-Mo1 ${ }^{\text {xii }}$	59.205 (7)
Mo1 ${ }^{\text {x }}$-Mo1-S1	115.964 (15)
Mo1 ${ }^{\text {x }}$-Mo1-S2	55.677 (18)
Mo1 ${ }^{\mathrm{x}}$-Mo1-S2 ${ }^{\text {xiii }}$	138.626 (14)
Mo1 ${ }^{\mathrm{x}}$ - Mol - $\mathrm{S}^{\text {x }}$	54.776 (13)
Mo1 ${ }^{\text {x }}$-Mo1-S2 ${ }^{\text {xii }}$	114.515 (14)
Mo1 ${ }^{\text {xi }}-\mathrm{Mol-Mo1}{ }^{\text {iii }}$	96.739 (8)
Mol ${ }^{\text {xi }}-\mathrm{Mol-Mo1}{ }^{\text {ix }}$	60.000 (8)
Mor ${ }^{\text {xi }}-\mathrm{Mol-Mo1}{ }^{\text {x }}$	60.398 (8)
Mo1 ${ }^{\text {xi }}-\mathrm{Mol-Mo1}{ }^{\text {xii }}$	90
Mo1 ${ }^{\text {xi}}-\mathrm{Mol-S1}$	55.682 (12)
Mo1 ${ }^{\text {xi}}$-Mo1-S2	116.065 (18)
$\mathrm{Mo1}{ }^{\text {xi}}-\mathrm{Mo} 1-\mathrm{S} 2^{\text {xiii }}$	135.971 (18)
$\mathrm{Mo1}{ }^{\text {xi }}-\mathrm{Mo} 1-\mathrm{S}^{\mathrm{x}}$	55.48 (2)
$\mathrm{Mo1}{ }^{\text {xi}}-\mathrm{Mol-S2}{ }^{\text {xii }}$	117.362 (19)
Mo1 ${ }^{\text {xii }}-\mathrm{Mol-Mo1}{ }^{\text {iii }}$	148.317 (7)
Mo1 ${ }^{\text {xii }}-\mathrm{Mo} 1-\mathrm{Mol}{ }^{\text {ix }}$	60.398 (6)
Mo1 ${ }^{\text {xii }}-\mathrm{Mo1}-\mathrm{Mol}^{\mathrm{x}}$	59.205 (7)
Mo1 $1^{\text {xii }}-\mathrm{Mo} 1-\mathrm{Mol}^{\text {xi }}$	90
Mol ${ }^{\text {xii }}$-Mol-S1	115.964 (13)
Mo1 ${ }^{\text {xii }} \mathrm{Mo}$ - -S 2	57.184 (12)
$\mathrm{Mo1}{ }^{\text {xii }}-\mathrm{Mol}-\mathrm{S} 2^{\text {xiii }}$	133.837 (19)
Mo1 ${ }^{\text {xii }}-\mathrm{Mo} 1-\mathrm{S} 2^{\mathrm{x}}$	113.894 (15)
Mo1 ${ }^{\text {xii }}-\mathrm{Mo} 1-\mathrm{S} 2^{\mathrm{xii}}$	55.318 (14)
S1—Mo1-S2	170.65 (2)
S1-Mo1-S2 ${ }^{\text {xiii }}$	93.53 (2)
S1-Mol-S2 ${ }^{\text {x }}$	90.323 (17)
S1—Mol—S2 ${ }^{\text {xii }}$	91.758 (14)
S2-Mo1-S2 ${ }^{\text {xiii }}$	95.79 (2)
S2-Mol-S2 ${ }^{\text {x }}$	87.39 (2)

sup-4

$\mathrm{S} 2{ }^{\mathrm{v}}-\mathrm{Hg} 1-\mathrm{S} 2^{\text {vii }}$	113.319 (19)
$\mathrm{S} 2{ }^{\text {vi }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	113.319 (17)
$\mathrm{S} 2{ }^{\text {vi }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	66.681 (17)
$\mathrm{S} 2{ }^{\text {vi }}-\mathrm{Hg} 1-\mathrm{S}^{\text {iv }}$	113.319 (19)
$\mathrm{S} 2^{\mathrm{vi}}-\mathrm{Hg} 1-\mathrm{S} 2^{\mathrm{v}}$	66.681 (19)
$\mathrm{S} 2{ }^{\text {vi }}-\mathrm{Hg} 1-\mathrm{S}^{\text {vii }}$	180
$\mathrm{S} 2{ }^{\text {vii }}$ - $\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	66.681 (17)
$\mathrm{S} 2{ }^{\text {vii }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	113.319 (17)
$\mathrm{S} 2{ }^{\text {vii }}-\mathrm{Hg} 1-\mathrm{S}^{\text {iv }}$	66.681 (19)
$\mathrm{S} 2{ }^{\text {vii }}$ - $\mathrm{Hg} 1-\mathrm{S}^{\text {v }}$	113.319 (19)
S2 ${ }^{\text {vii }}$ - $\mathrm{Hg} 1-\mathrm{S}^{\text {vi }}$	180
Mo1 ${ }^{\text {viii }}$-Mo1—Mo1 ${ }^{\text {iii }}$	133.459 (8)
Mo1 ${ }^{\text {viii--Mo1-S1 }}$	85.136 (14)
Mo1 $1^{\text {viii }}$-Mo1-S2	85.600 (16)
Mo1 ${ }^{\text {viii }}$-Mo1—S2 ${ }^{\text {xiii }}$	176.394 (13)
Mo1 ${ }^{\text {viii }}-\mathrm{Mo} 1-\mathrm{S} 2^{\mathrm{x}}$	83.677 (18)
Mo1 ${ }^{\text {viii }}$-Mo1—S2 ${ }^{\text {xii }}$	85.310 (16)
Mo1 ${ }^{\text {iii }}$-Mo1—Mo1 ${ }^{\text {viii }}$	133.459 (8)
Mol $1^{\text {iii }}$-Mo1-Mo1 ${ }^{\text {ix }}$	147.479 (10)
Mol ${ }^{\text {iiii-Mo1-Mo1 }}{ }^{\text {x }}$	97.693 (7)
Mol $1^{\text {iii }}$-Mol-Mo1 ${ }^{\text {xi }}$	96.739 (8)
Moi ${ }^{\text {iii }}$-Mo1—Mo1 ${ }^{\text {xii }}$	148.317 (7)
$\mathrm{Mol}{ }^{\text {iiii}}$-Mo1-S1	92.988 (11)
Moi ${ }^{\text {iii }}$-Mo1-S2	92.457 (12)
Moi ${ }^{\text {iiii }}$-Mo1-S2 ${ }^{\text {xiii }}$	49.898 (13)
Mol $1^{\text {iii }}$ - $\mathrm{Mo} 1-\mathrm{S}^{\mathrm{x}}$	49.797 (18)
$\mathrm{Mo1}{ }^{\text {iii }}$-Mo1-S2 ${ }^{\text {xii }}$	141.203 (18)
Mol ${ }^{\text {ix }}$ - Mol-Mol ${ }^{\text {iii }}$	147.479 (10)
Mol ${ }^{\text {ix }}$ - Mo1-Mo1 ${ }^{\text {x }}$	90
Mol ${ }^{\text {ix }}$-Mo1-Mo1 ${ }^{\text {xi }}$	60.000 (8)
Mo1 ${ }^{\text {ix }}$-Mol-Mol ${ }^{\text {xii }}$	60.398 (6)
$\mathrm{Mo1}{ }^{\text {ix }}$-Mo1-S1	55.682 (11)
$\mathrm{Mol}{ }^{\text {ix }}$-Mo1-S2	117.489 (13)
$\mathrm{Mo1}{ }^{\text {ix }}-\mathrm{Mol}-\mathrm{S} 2^{\text {xiii }}$	131.337 (14)
$\mathrm{Mol}{ }^{\text {ix }}-\mathrm{Mol-S2}{ }^{\text {x }}$	115.28 (2)
Mo1 ${ }^{\text {ix }}$-Mol-S2 ${ }^{\text {xii }}$	57.566 (18)

S2-Mol-S2 ${ }^{\text {xii }}$	88.750 (19)
$\mathrm{S} 2{ }^{\text {xiii }}-\mathrm{Mo} 1-\mathrm{S} 2$	95.79 (2)
$\mathrm{S} 2{ }^{\text {xiii }}-\mathrm{Mo} 1-\mathrm{S} 2{ }^{\mathrm{x}}$	99.70 (2)
$\mathrm{S} 2{ }^{\text {xiii }}-\mathrm{Mo} 1-\mathrm{S} 2{ }^{\text {xii }}$	91.39 (2)
$\mathrm{S} 2{ }^{\mathrm{x}}$-Mo1-S2	87.39 (2)
S2 ${ }^{\mathrm{x}}$-Mo1-S2 ${ }^{\text {xiii }}$	99.70 (2)
S2 ${ }^{\mathrm{x}}$-Mo1-S2 ${ }^{\text {xii }}$	168.58 (2)
$\mathrm{S} 2{ }^{\text {xii }}-\mathrm{Mo} 1-\mathrm{S} 2$	88.750 (19)
$\mathrm{S} 2{ }^{\text {xii }}-\mathrm{Mo} 1-\mathrm{S} 2^{\text {xiii }}$	91.39 (2)
$\mathrm{S} 2{ }^{\mathrm{xii}}-\mathrm{Mo} 1-\mathrm{S} 2^{\mathrm{x}}$	168.58 (2)
$\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{Mol}$	139.382 (14)
$\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{Mol}{ }^{\text {ix }}$	139.382 (13)
$\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{Mol}^{\text {xi }}$	139.382 (14)
Mo1-S1-Mol ${ }^{\text {ix }}$	68.64 (2)
Mo1-S1-Mo1 ${ }^{\text {xi }}$	68.64 (2)
$\mathrm{Mo1}{ }^{\text {ix }}$-S1-Mol	68.64 (2)
$\mathrm{Mol}{ }^{\text {ix }}-\mathrm{S} 1-\mathrm{Mo1}{ }^{\text {xi }}$	68.64 (2)
Mor ${ }^{\text {xi }}$-S1-Mo1	68.64 (2)
$\mathrm{Mo1} 1^{\text {xi }}-\mathrm{S} 1-\mathrm{Mo1}{ }^{\text {ix }}$	68.64 (2)
$\mathrm{Hg} 1^{\text {xiv }}$-S2-Mol	125.450 (18)
$\mathrm{Hg} 1^{\text {xiv }}-\mathrm{S} 2-\mathrm{Mo}^{\text {x }}$	98.407 (18)
$\mathrm{Hg} 1^{\mathrm{xiv}}-\mathrm{S} 2-\mathrm{Mo1}^{\text {xv }}$	97.225 (18)
$\mathrm{Hg} 1^{\text {xiv }}-\mathrm{S} 2-\mathrm{Mo1} 1^{\text {xii }}$	156.59 (2)
Mo1-S2-Mo1 ${ }^{\text {x }}$	69.005 (19)
Mo1-S2-Mo1 ${ }^{\text {xv }}$	132.74 (2)
Mol-S2-Mo1 ${ }^{\text {xii }}$	68.041 (15)
Mo1 ${ }^{\mathrm{x}}$-S2-Mo1	69.005 (19)
Mo1 ${ }^{\mathrm{x}}$ - $\mathrm{S} 2-\mathrm{Mol}^{\text {xv }}$	129.09 (2)
Mo1 ${ }^{\mathrm{x}}-\mathrm{S} 2-\mathrm{Mo1}{ }^{\text {xii }}$	66.955 (19)
Mo1 ${ }^{\text {xv }}$-S2-Mo1	132.74 (2)
$\mathrm{Mo1}{ }^{\mathrm{xv}}-\mathrm{S} 2-\mathrm{Mol}^{\mathrm{x}}$	129.09 (2)
Mo1 ${ }^{\text {xv }}-\mathrm{S} 2-\mathrm{Mo1}{ }^{\text {xii }}$	80.305 (15)
Mo1 ${ }^{\text {xii }}$-S2-Mo1	68.041 (15)
$\mathrm{Mol}^{\mathrm{xii}}-\mathrm{S} 2-\mathrm{Mol}^{\mathrm{x}}$	66.955 (19)
$\mathrm{Mol}{ }^{\text {xii }}-\mathrm{S} 2-\mathrm{Mo1}^{\mathrm{xv}}$	80.305 (15)

Symmetry codes: (i) $-x,-y,-z$; (ii) $x+1 / 3, y+2 / 3, z+2 / 3$; (iii) $-x-1 / 3,-y-2 / 3,-z-2 / 3$; (iv) $-y-2 / 3, x-y-1 / 3, z+2 / 3$; (v) $y+2 / 3,-x+y+1 /$ $3,-z-2 / 3$; (vi) $-x+y+1 / 3,-x-1 / 3, z+2 / 3$; (vii) $x-y-1 / 3, x+1 / 3,-z-2 / 3$; (viii) $-x,-y,-z-1$; (ix) $-y, x-y, z$; (x) $y,-x+y,-z-1$; (xi) $-x+y$, $-x, z$; (xii) $x-y, x,-z-1$; (xiii) $-y-1 / 3, x-y-2 / 3, z+1 / 3$; (xiv) $x-1 / 3, y-2 / 3, z-2 / 3$; (xv) $-x+y+1 / 3,-x-1 / 3, z-1 / 3$.

supplementary materials

Fig. 1

Fig. 2

[^0]: 5784 measured reflections
 1121 independent reflections 1069 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.044$

